Miscellaneous topics in BCS theory (relevant to SC2)

1. Limits on T_{c} in BCS-type theories

BCS theory:

$$
\begin{equation*}
T_{c}=1.13 \hbar \omega_{c} \exp -1 / g \quad g \equiv N(0)\left|V_{\text {eff }}\right|>0 \tag{1}
\end{equation*}
$$

so, prima facie, limiting value is $1.13 \hbar \omega_{c} \gtrsim \mathrm{RT}$ if $\omega_{c} \sim \omega_{\mathrm{D}}$. (but formulae not quantitatively valid then!)

Two problems with BCS theory:
(i) no account of repulsive Coulomb interaction
(ii) if indeed T_{c}, hence Δ, is comparable to ω_{D} then frequency dependence of interaction ('retardation') may be important.
(i) Inclusion of Coulomb interaction:

A prima facie problem is that the Coulomb interaction scatters into states with energies $\gg \Delta$ and even $\gg \omega_{\mathrm{D}}$. This can be handled by renormalization technique of lecture 6: recall,

$$
\begin{equation*}
\hat{t}=\hat{V} /\left(1+\hat{P}_{1} \hat{Q} \hat{V}\right), \quad \hat{P}_{1} \hat{Q} \approx \sum_{\mid \epsilon \epsilon>\epsilon_{c}}\left(2 \epsilon_{\mathbf{k}}\right)^{-1} \tag{2}
\end{equation*}
$$

where the sum goes over states beyond a cutoff ϵ_{c} which it is convenient to take as (\sim) ω_{D}. If the matrix element $V_{\mathbf{k k}^{\prime}}$ is roughly constant at some value V_{c}, then we have

$$
\begin{equation*}
V_{c} \sum_{\mathbf{k}} \frac{1}{2 \epsilon_{\mathbf{k}}} \simeq V_{c} N(0) \ln \left(\epsilon_{\mathrm{F}} / \omega_{\mathrm{D}}\right) \tag{3}
\end{equation*}
$$

and hence the effective interaction to within the shell is constant and given by

$$
\begin{equation*}
t=\frac{V_{c}}{1+N(0) V_{c} \ln \left(\epsilon_{\mathrm{F}} / \omega_{\mathrm{D}}\right)} \tag{4}
\end{equation*}
$$

In the general case the effect is to adjust the 'effective' ϵ_{c}. In the literature it is conventional to write $N(0) V_{c} \equiv \mu, N(0) t \equiv \mu^{*}$, then we have

$$
\begin{equation*}
\mu^{*}=\mu /\left(1+\mu \ln \left(\epsilon_{\mathrm{F}} / \omega_{\mathrm{D}}\right)\right) \tag{5}
\end{equation*}
$$

so for $\mu \rightarrow \infty, \mu^{*} \rightarrow\left(\ln \epsilon_{\mathrm{F}} / \omega_{\mathrm{D}}\right)^{-1}\left(\right.$ typically $\left.\sim\left(\ln 10^{2}\right)^{-1} \sim 0.15-0.2\right)$. So, if phonon coupling constant $N(0)\left|V_{\mathrm{ph}}\right|$ is λ (see below), then the total effective value of g is $\lambda-\mu^{*}$, and so we obtain

$$
\begin{equation*}
T_{c}=1.13 \hbar \omega_{\mathrm{D}} \exp -1 /\left(\lambda-\mu^{*}\right) \tag{6}
\end{equation*}
$$

(ii)* Inclusion of phonon 'retardation':

[^0]Eliashberg equations (at $T=0$):

$$
\begin{align*}
& \Delta(\omega)=\frac{1}{Z(\omega)} \int_{0}^{\infty} d \omega^{\prime} \operatorname{Re}\left\{\frac{\Delta\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\Delta^{2}\left(\omega^{\prime}\right)\right)^{1 / 2}}\right\}\left[\int_{0}^{\infty} d \Omega \alpha^{2}(\Omega) F(\Omega) \times \frac{2\left(\omega^{\prime}+\Omega\right)}{\left(\omega^{\prime}+\Omega\right)^{2}-\omega^{2}}-\mu^{*}\right] \tag{7a}\\
& (1-Z(\omega)) \omega=\int_{0}^{\infty} d \omega^{\prime} \operatorname{Re}\left\{\frac{\omega^{\prime}}{\left(\omega^{\prime 2}-\Delta^{2}\left(\omega^{\prime}\right)\right)^{1 / 2}}\right\}\left[\int_{0}^{\infty} d \Omega \alpha^{2}(\Omega) F(\Omega) \times \frac{2(\omega+\Omega)}{\left(\omega^{\prime}+\Omega\right)^{2}-\omega^{2}}\right] \tag{7b}
\end{align*}
$$

$\left(\alpha^{2}(\Omega) \equiv\right.$ mean-square coupling constant to phonons in frequency range $[\Omega, \Omega+d \Omega], F(\Omega)=$ phonon DOS in this range) Note: $1^{\text {st }}$ Eliashberg equation (7a) is, apart from $Z(\omega)$ correction, simply ${ }^{\dagger}$

$$
\begin{equation*}
\Delta_{\mathbf{k}}=\sum_{\mathbf{k}^{\prime}} V_{\mathbf{k k}^{\prime}} \frac{\Delta_{\mathbf{k}^{\prime}}}{2 E_{\mathbf{k}^{\prime}}}, \quad V_{\mathbf{k} \mathbf{k}^{\prime}} \equiv\left|g_{\mathbf{k} \mathbf{k}^{\prime}}\right|^{2} \frac{E_{\mathbf{k}^{\prime}}+\omega_{\mathrm{ph}}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)}{\left(E_{\mathbf{k}^{\prime}}+\omega_{\mathrm{ph}}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)\right)^{2}-E_{\mathbf{k}}^{2}} \tag{8}
\end{equation*}
$$

The second Eliashberg equation $(7 \mathrm{~b})$, which is also valid in the normal phase $\left(\Delta\left(\omega^{\prime}\right)=0\right)$, expresses the renormalization of the single-electron energy by emission and absorption of virtual phonons; by comparing (7 b) to the standard second-order perturbation theory expression, we see that $Z(\omega)$ is the ratio of the value of ϵ_{k} as renormalized by the electronphonon interaction to the original value. Thus the $1 / Z(\omega)$ in eqn. (7a) expresses the corresponding renormalization of the DOS. Note that in the limit of weak coupling $\left(\Delta \ll \omega_{\mathrm{D}}\right)$ we can renormalize and introduce cutoff $\omega_{c} \ll \omega_{\mathrm{D}}$ on ω^{\prime} : Then the term $\left(\omega^{\prime}+\Omega\right) /\left(\left(\omega^{\prime}+\Omega\right)^{2}-\omega^{2}\right)$ can be just approximated as Ω^{-1}, and we find it is consistent to put $Z(\omega)=1(+0(\lambda)), \Delta(\omega)=$ const, and thus obtain a BCS theory, with the effective λ given by

$$
\begin{equation*}
\lambda=2 \int_{0}^{\infty} d \Omega \frac{\alpha^{2}(\Omega) F(\Omega)}{\Omega} \tag{9}
\end{equation*}
$$

McMillan and Rowell: differential conductance measures $\Delta(\omega)$ via

$$
\begin{equation*}
(\partial I / \partial V)_{\mathrm{S}}(\omega) /(\partial I / \partial V)_{\mathrm{N}}=\operatorname{Re}\left\{\frac{\omega}{\left(\omega^{2}-\Delta^{2}(\omega)\right)^{1 / 2}}\right\}, \quad \hbar \omega \equiv e V \tag{10}
\end{equation*}
$$

then can reconstruct $\alpha^{2}(\Omega) F(\Omega)$, compare with e.g. neutron scattering data. Fits in general very good.

McMillan:

Compute T_{c} from (finite- T variant of) Eliashberg equations: in practice must use definite form of $\alpha^{2}(\Omega) F(\Omega)$, so take the one for Nb . Result well fitted by

$$
\begin{equation*}
T_{c}=\frac{\theta_{\mathrm{D}}}{1.45} \exp -\left\{\frac{1.04(1+\lambda)}{\lambda-\mu^{*}(1+0.63 \lambda)}\right\}, \quad \lambda \equiv 2 \int_{0}^{\infty} d \Omega \frac{\alpha^{2}(\Omega) F(\Omega)}{\Omega} \tag{11}
\end{equation*}
$$

[^1]One sees that even in the limit $\lambda \rightarrow \infty$ (which is probably unrealistic, because the lattice is likely to be unstable in this limit) the maximum value attainable is

$$
\begin{equation*}
T_{c}^{\max }=\frac{\theta_{\mathrm{D}}}{1.45} \exp -\left(\frac{1.04}{1-0.63 \mu^{*}}\right) \lesssim \frac{\theta_{\mathrm{D}}}{5} \tag{12}
\end{equation*}
$$

However, McMillan suggested that even this is rather optimistic, since there seems empirically to be a cancellation such that for a given class of materials $\lambda \propto 1 / M{\omega_{D}}^{2}$: thus, any attempt to increase λ is accompanied by a decrease in the prefactor ($\sim \theta_{\mathrm{D}}$). By extrapolating empirical values McMillan empirically predicted a $T_{c} \sim 40 \mathrm{~K}$ for $\mathrm{V}_{3} \mathrm{Si}$ (actually $T_{c} \sim 24 \mathrm{~K}$).

Nb. Empirically, ${ }^{\dagger}$ values of λ appear to be in the range $0.25-1.12$ (for Pb) and those for μ^{*} in the range 0.1-0.2. [Allen \& Dynes, Phys. Rev. B 12, 95 (1975) suggest $\left.T_{c} \sim 0.15 \lambda\left\langle\omega^{2}\right\rangle^{1 / 2}\right]$
[Excursion: how good is experimental evidence for Eliashberg equations as such? McMillan \& Rowell: 'believed to be correct to lowest order in $\hbar \omega_{\mathrm{D}} / \epsilon_{\mathrm{F}} \sim 10^{-2}-10^{-3}$, and we are able to show experimentally that errors not larger a few $\%$ ': but $T_{c} / \omega_{\mathrm{D}}$ is only of order of few $\%$ even for $\mathrm{Pb}!$]
$\left[\mathrm{H}_{2} \mathrm{~S}\right.$ at $\sim 200 \mathrm{GPa}$: See Duan et al. Sci. Rep. 4, 6968 (2014). Li et al., J. Chem. Phys. 140, 174712(2014): Drozhdov et al., ArXiv: 1412.0460]

2. Where is the energy saved?

G.V. Chester, Phys. Rev. B 103, 1693 (1956)

Consider an arbitrary metal (in zero magnetic field) at $T=0$. The total energy is the sum of electron KE K_{m}, nuclear KE K_{M} and the total Coulomb energy V, which is the sum of $\mathrm{e}-\mathrm{e}, \mathrm{e}-\mathrm{n}$ and $\mathrm{n}-\mathrm{n}$ terms. Thus its expectation value U is given by

$$
\begin{equation*}
U=\left\langle K_{m}\right\rangle+\left\langle K_{M}\right\rangle+\langle V\rangle \tag{13}
\end{equation*}
$$

The second input is the virial theorem, which states that

$$
\begin{equation*}
\left\langle K_{m}\right\rangle+\left\langle K_{M}\right\rangle+\frac{1}{2}\langle Q\rangle=\frac{3}{2} p \Omega \quad(\Omega=\text { volume }) \tag{14}
\end{equation*}
$$

where Q is so called virial, namely

$$
\begin{equation*}
Q \equiv-\sum_{i j} \mathbf{r}_{i j} \nabla_{\mathbf{r}_{i j}} V\left(\mathbf{r}_{i j}\right) \tag{15}
\end{equation*}
$$

which sums over all particles (e and n). Because $V\left(\mathbf{r}_{i j}\right)= \pm Z e^{2} /\left|\mathbf{r}_{i j}\right|$, we have the simple equality $Q=V$. Thus, the second relation is

$$
\begin{equation*}
\left\langle K_{m}\right\rangle+\left\langle K_{M}\right\rangle+\frac{1}{2}\langle V\rangle=\frac{3}{2} p \Omega \quad(\Omega=\text { volume }) \tag{16}
\end{equation*}
$$

[^2]Finally, we have Feynman-Hellmann theorem

$$
\begin{equation*}
-M\left(\frac{\partial U}{\partial M}\right)=\left\langle K_{M}\right\rangle \tag{17}
\end{equation*}
$$

(we have a similar theorem for K_{m}, but it is not much use since the electron mass is not variable).

Now let us subtract these results for the superconducting ground state from those for the normal one, ${ }^{\ddagger}$ and denote $X_{s}-X_{n} \equiv \Delta X$ (so that in particular $\Delta U<0$). We get:

$$
\begin{gather*}
\Delta\left\langle K_{m}\right\rangle+\Delta\left\langle K_{M}\right\rangle+\Delta\langle V\rangle=\Delta U \tag{18}\\
\Delta\left\langle K_{m}\right\rangle+\Delta\left\langle K_{M}\right\rangle+\frac{1}{2} \Delta\langle V\rangle=\frac{3}{2} \Delta(p \Omega) \tag{19}\\
-M \frac{\partial\langle U\rangle}{\partial M}=\Delta\left\langle K_{M}\right\rangle \tag{20}
\end{gather*}
$$

It is convenient to work at constant pressure: then the term $\frac{3}{2} p \Delta \Omega$ is known, experimentally, to be extremely small compared to ΔU, so we may legitimately neglect it. Also, we use the experimental fact that the shape of the curve $U(T)$ is to a high degree of approximation independent of M, and thus $\Delta U \propto T_{c}^{2} \propto M^{-2 \alpha}$, where α is the isotopic exponent. Thus eqn.'s (18-20) reduce to

$$
\begin{gather*}
\Delta\left\langle K_{m}\right\rangle+\Delta\left\langle K_{M}\right\rangle+\Delta\langle V\rangle=\Delta U \tag{21}\\
\Delta\left\langle K_{m}\right\rangle+\Delta\left\langle K_{M}\right\rangle+\frac{1}{2} \Delta\langle V\rangle=0 \tag{22}\\
\Delta\left\langle K_{M}\right\rangle=2 \alpha \Delta U \tag{23}
\end{gather*}
$$

[note that eqn. (23) is independent of the assumption of negligible $\Delta \Omega$]. Thus,

$$
\begin{array}{|c|}
\Delta\langle V\rangle=2 \Delta U \tag{24}\\
\Delta\left\langle K_{m}\right\rangle=-(1+2 \alpha) \Delta U \\
\Delta\left\langle K_{M}\right\rangle=2 \alpha \Delta U \\
\hline
\end{array}
$$

For most of the simple BCS superconductors, the experimental value of α is approximately $1 / 2$. Thus, we find

$$
\begin{gather*}
\Delta\langle V\rangle=-\Delta\left\langle K_{m}\right\rangle=2 \Delta\langle U\rangle \quad(\text { note } \Delta U<0!) \tag{27}\\
\Delta\left\langle K_{M}\right\rangle=\Delta U \tag{28}
\end{gather*}
$$

Thus, we get the surprising result that the decrease in Coulomb energy by formation of the superconducting state is exactly balanced, in the limit $\alpha=1 / 2$, by the increase in electron kinetic energy, and the condensation energy can be attributed entirely to a saving in nuclear kinetic energy! Note that this conclusion is completely independent of any microscopic theory, in particular of BCS theory which postdates Chester's work (by a month or so!).

[^3]
3. d-vector notation ${ }^{\S}$

Definition: $\left\langle\psi_{\alpha}(\mathbf{r}) \psi_{\beta}\left(\mathbf{r}^{\prime}\right)\right\rangle \equiv F_{\alpha \beta}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$ or $\left\langle a_{\mathbf{k} \alpha} a_{-\mathbf{k} \beta}\right\rangle \equiv F_{\alpha \beta}(\mathbf{k})$
concise notation:

$$
\begin{equation*}
\mathbf{d}=\left(i \sigma_{y} \boldsymbol{\sigma}\right)_{\alpha \beta} F_{\beta \alpha} \tag{29}
\end{equation*}
$$

(if in doubt, play with Zeeman states of $S=1$ molecule!)
Consider a given value of \mathbf{k} and let the relevant spin-space 'wave function' be $|\Psi\rangle$. If \mathbf{d} real, $\mathbf{S} \cdot \mathbf{d}|\Psi\rangle=0$, i.e. $S=1, S_{z}=0$ along d
also, along any axis $\perp \mathbf{d},|\uparrow \uparrow\rangle+e^{i \phi}|\downarrow \downarrow\rangle$.
If for any single value of $\mathbf{k} \mathbf{d} \equiv \mathbf{d}(\mathbf{k})$ is real (though its direction may depend on the direction of \mathbf{k}) then the many-body state in question called 'unitary'. For unitary states, easier to choose axes separately for each \mathbf{k}, (e.g. along d) simply described by scalar $F(\mathbf{k})$, and scalar gap $\Delta(\mathbf{k})$, with $F_{\mathbf{k}}=\Delta(\mathbf{k}) / 2 E_{\mathbf{k}}, E_{\mathbf{k}}=\left(\epsilon_{\mathbf{k}}+|\Delta(\mathbf{k})|^{2}\right)^{1 / 2}$. In a single reference frame F and Δ are matrices in spin space:

$$
\begin{equation*}
F_{\alpha \beta}=\frac{\Delta_{\alpha \beta}}{2 E_{\mathbf{k}}} \tag{30}
\end{equation*}
$$

and $|\Delta|^{2}$ is given by

$$
\begin{equation*}
|\Delta(\mathbf{k})|^{2}=\operatorname{Tr} \Delta(\mathbf{k}) \Delta^{\dagger}(\mathbf{k}) \sim|\mathbf{d}(\mathbf{k})|^{2} \tag{31}
\end{equation*}
$$

Examples of unitary states (in superfluid $\left.{ }^{3} \mathrm{He}\right)$: ABM $(\mathbf{d}=$ const), BW $(\mathbf{d}(\hat{\boldsymbol{n}}) \propto \hat{\boldsymbol{n}})$.

[^4]
[^0]: *For a detailed account of Eliashberg theory, see article by Scalapino in Parks.

[^1]: ${ }^{\dagger}$ since $\int \frac{d E}{\epsilon}=\int \frac{d \epsilon}{E}$.

[^2]: ${ }^{\dagger}$ i.e. by taking λ from independent data and fitting T_{c} to McMillan formula.

[^3]: ${ }^{\ddagger}$ With the magnetic field energy which in practice is necessary to stabilize the normal state subtracted

[^4]: ${ }^{\S}$ This notation is useful for the description of Fermi superfluids with spin triplet pairing, such as superfluid ${ }^{3} \mathrm{He}$. See e.g. AJL QL $\S 6.2$

